

Distributed Air-Ground Traffic Management Meeting, September 10-19, 2002

Agenda

Schedule

- I. Background on DAG-TM Research
- II. Overview of September 2002 Experiment

BREAK

- III. Detailed description of experimental conditions:
 - Center Airspace:
 - En route trajectory negotiation (CE-6)
 - En route free maneuvering (CE-5)
 - Baseline
 - TRACON Airspace:
 - In trail self-spacing (CE-11)
 - Baseline

I. Background: Distributed Air-Ground Traffic Management Research

Human Factors and Operations Project NASA Ames Research Center

Advanced Air Transportation Technologies Project

Goal

 In alliance with the FAA, enable the next generation of increases in efficiency, flexibility, capacity, and safety of aircraft operations within the US and global airspace system.

Focus

 Develop <u>human-centered</u> automation to assist air traffic management in short and intermediate term decision making between pilots, controllers, and dispatchers.

Focus Areas

- Develop en route and terminal decision support tools for FAA Free Flight Phases 1 and 2
 - Enhance capabilities of present air traffic system
 - Deliver CTAS decision support tools to the FAA
- Distributed Air-Ground Traffic Management (DAG-TM)
 Research
 - Free Flight concept exploration
 - Evaluate feasibility of making major changes to current system and procedures
 - Deliver tested concepts to the FAA

ADVANCED AIR TRANSPORTATION TECHNOLOGIES

Automation Tools and DAG-TM

DAG-TM Concept Elements

- Four concept elements (CEs) are being pursued:
 - CE-5: Free Maneuvering for User-preferred Separation Assurance and Local traffic flow management (TFM)
 Conformance
 - CE-6: Trajectory Negotiation for User-preferred Separation
 Assurance and Local TFM Conformance
 - CE-7: Collaboration for Mitigating Local TFM Constraints due to Weather, Special Use Airspace, and Complexity
 - CE-11: Self-spacing for Merging and In-trail Separation

CE-5:

Free Maneuvering for User-preferred Separation Assurance and Local TFM Conformance

Problem:

- Potential traffic separation conflicts may cause controllerissued deviations that are conservative or not preferred by users
- Users may not always be able to fly preferred trajectories

Solution:

- Air: Cockpit Display of Traffic Information (CDTI)equipped aircraft maneuver freely for separation assurance
- Ground: Controller monitors separation (with complementary ground-based tools) and provides separation assurance for non-equipped aircraft

CE 6:

Trajectory Negotiation for User-preferred Separation Assurance and Local TFM Conformance

Problem:

- Potential traffic separation conflicts may cause controllerissued deviations that are conservative or not preferred by users
- Users may not always be able to fly preferred trajectories

Solution:

- User and controller negotiate for efficient resolution of conflicts
- User-controller data exchange (intent, winds) for improved trajectory prediction
- Controller uses enhanced DSTs with conflict detection & resolution capabilities
- ATC moves to a "trajectory-based" orientation

CE 11:

Self-Spacing for Merging and In-trail Separation

- Problem:
 - Conservative spacing buffers on final approach reduce arrival throughput and airport capacity
- Solution:
 - CDTI-equipped aircraft are cleared to maintain separation relative to a leading aircraft:
 - Flight deck displays and guidance for:
 - Self-spacing and merging
 - Fine tuning of fixed-time spacing
 - Controller displays & procedures for shared separation responsibility

Research Plans

- Develop and test decision support tools
- Three years of DAG-TM research
 - Develop and clarify concepts
 - Involve users (pilots, controllers, and dispatchers)
 - Conduct laboratory demonstrations of concepts
- Goal is to evaluate feasibility and potential benefits
- Deliver information and prototypes to the FAA by 2004

ADVANCED AIR TRANSPORTATION TECHNOLOGIES

[End of Background: DAG-TM Research]